5,954 research outputs found

    Complete gate control of supercurrent in graphene p-n junctions

    Get PDF
    In a conventional Josephson junction of graphene, the supercurrent is not turned off even at the charge neutrality point, impeding further development of superconducting quantum information devices based on graphene. Here we fabricate bipolar Josephson junctions of graphene, in which a p-n potential barrier is formed in graphene with two closely spaced superconducting contacts, and realize supercurrent ON/OFF states using electrostatic gating only. The bipolar Josephson junctions of graphene also show fully gate-driven macroscopic quantum tunnelling behaviour of Josephson phase particles in a potential well, where the confinement energy is gate tuneable. We suggest that the supercurrent OFF state is mainly caused by a supercurrent dephasing mechanism due to a random pseudomagnetic field generated by ripples in graphene, in sharp contrast to other nanohybrid Josephson junctions. Our study may pave the way for the development of new gate-tuneable superconducting quantum information devices.open114344sciescopu

    Family influences on children's physical activity and fruit and vegetable consumption

    Get PDF
    Background : There is evidence of a clustering of healthy dietary patterns and physical activity among young people and also of unhealthy behaviours. The identification of influences on children\u27s health behaviors, particularly clustered health behaviors, at the time at which they develop is imperative for the design of interventions. This study examines associations between parental modelling and support and children\u27s physical activity (PA) and consumption of fruit and vegetables (FV), and combinations of these behaviours.Methods : In 2002/3 parents of 775 Australian children aged 10&ndash;12 years reported how frequently their child ate a variety of fruits and vegetables in the last week. Children wore accelerometers for eight days during waking hours. Parental modelling and parental support (financial and transport) were self-reported. Binary logistic and multinomial logistic regression analyses examined the likelihood of achieving &ge; 2 hours of PA per day (high PA) and of consuming &ge; 5 portions of FV per day (high FV) and combinations of these behaviors (e.g. high PA/low FV), according to parental modelling and support.Results : Items of parental modelling and support were differentially associated with child behaviours. For example, girls whose parents reported high PA modelling had higher odds of consuming &ge; 5 portions of FV/day (OR = 1.95, 95% CI = 1.32&ndash;2.87, p &lt; 0.001). Boys whose parents reported high financial support for snacks/fast foods had higher odds of having \u27high PA/low FV\u27 (OR = 2.0, 95% CI = 1.1&ndash;3.7).Conclusion : Parental modelling of and support for physical activity and fruit and vegetable consumption were differentially associated with these behaviours in children across behavioural domains and with combinations of these behaviours. Promoting parents\u27 own healthy eating and physical activity behaviours as well encouraging parental modelling and support of these behaviours in their children may be important strategies to test in future research.<br /

    Combined Effects of Nanoroughness and Ions Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration

    Get PDF
    Providing appropriate biophysical and biochemical cues to the interface is a facile strategy to enhance the osteogenic ability of metallic implants. Here we exploited this through the incorporation of mesoporous bioactive glass nanoparticles (MBGN) at a high content (1:1 by weight) to a biopolymer chitosan in the electrodeposition process of titanium. The MGBN/chitosan layer thickness, tunable by electrodeposition parameters, exhibited an accelerated ability of apatite mineral induction in a body simulating medium. Of note, the involvement of MBGN could generate nanoscale roughness in a unique range of 10-25 nm. Moreover, the layer showed a slowly releasing profile of ions (calcium and silicate) over weeks at therapeutically relevant doses. The ion-releasing nanotopological surface was demonstrated to alter the preosteoblasts responses in a way favorable for osteogenic differentiation. The combinatory cues of nanotopology (25 nm roughness) and ion release enabled highly accelerated cellular anchorage with somewhat limited spreading area at initial periods. The subsequent osteoblastic differentiation behaviors on the engineered surface, as examined up to 21 days, showed significantly enhanced alkaline phosphate activity and up-regulated expression of bone-associated genes (ALP, Col I, OPN, and OCN). These results indicate that the combinatory cues provided by nanotopology (25 nm roughness) and ions released from MBGN are highly effective in stimulating osteoblastic differentiation and suggest that the MBGN/chitosan may serve as a potential composition for bone implant coatings

    Dark Matter Deficient Galaxies Produced via High-velocity Galaxy Collisions in High-resolution Numerical Simulations

    Get PDF
    Abstract The recent discovery of diffuse dwarf galaxies that are deficient in dark matter appears to challenge the current paradigm of structure formation in our universe. We describe numerical experiments to determine if so-called dark matter deficient galaxies (DMDGs) could be produced when two gas-rich, dwarf-sized galaxies collide with a high relative velocity of ∼300 km s−1. Using idealized high-resolution simulations with both mesh-based and particle-based gravito-hydrodynamics codes, we find that DMDGs can form as high-velocity galaxy collisions and separate dark matter from the warm disk gas, which subsequently is compressed by shock and tidal interaction to form stars. Then using the large simulated universe IllustrisTNG, we discover a number of high-velocity galaxy collision events in which DMDGs are expected to form. However, we did not find evidence that these types of collisions actually produced DMDGs in the TNG100-1 run. We argue that the resolution of the numerical experiment is critical to realizing the “collision-induced” DMDG formation scenario. Our results demonstrate one of many routes in which galaxies could form with unconventional dark matter fractions.</jats:p

    Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2

    Get PDF
    The optical Stark effect is a coherent light-matter interaction describing the modification of quantum states by non-resonant light illumination in atoms, solids and nanostructures. Researchers have strived to utilize this effect to control exciton states, aiming to realize ultra-high-speed optical switches and modulators. However, most studies have focused on the optical Stark effect of only the lowest exciton state due to lack of energy selectivity, resulting in low degree-of-freedom devices. Here, by applying a linearly polarized laser pulse to few-layer ReS2, where reduced symmetry leads to strong in-plane anisotropy of excitons, we control the optical Stark shift of two energetically separated exciton states. Especially, we selectively tune the Stark effect of an individual state with varying light polarization. This is possible because each state has a completely distinct dependence on light polarization due to different excitonic transition dipole moments. Our finding provides a methodology for energy-selective control of exciton states.111612Ysciescopu

    1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy

    Get PDF
    The 1s exciton-the ground state of a bound electron-hole pair-is central to understanding the photoresponse of monolayer transition metal dichalcogenides. Above the 1s exciton, recent visible and near-infrared investigations have revealed that the excited excitons are much richer, exhibiting a series of Rydberg-like states. A natural question is then how the internal excitonic transitions are interrelated on photoexcitation. Accessing these intraexcitonic transitions, however, demands a fundamentally different experimental tool capable of probing optical transitions from 1s &apos;bright&apos; to np &apos;dark&apos; states. Here we employ ultrafast midinfrared spectroscopy to explore the 1s intraexcitonic transitions in monolayer MoS2. We observed twofold 1s-3p intraexcitonic transitions within the A and B excitons and 1s-2p transition between the A and B excitons. Our results revealed that it takes about 0.7 ps for the 1s A exciton to reach quasi-equilibrium; a characteristic time that is associated with a rapid population transfer from the 1s B exciton, providing rich characteristics of many-body exciton dynamics in two-dimensional materials.112412Ysciescopu

    Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity

    Get PDF
    In general, in thermoelectric materials the electrical conductivity sigma and thermal conductivity kappa are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between sigma and kappa as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between sigma and kappa. In other words, as the thickness of SnS2 decreased, sigma increased whereas kappa decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor similar to 1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7mVK(-1) for 16-nm-thick samples at 300 K.114330Ysciescopu

    Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial–mesenchymal transition and promotes tumor growth and angiogenesis

    Get PDF
    The angiotensin II type I receptor (AGTR1) has been implicated in diverse aspects of human disease, from the regulation of blood pressure and cardiovascular homeostasis to cancer progression. We sought to investigate the role of AGTR1 in cell proliferation, epithelial-mesenchymal transition (EMT), migration, invasion, angiogenesis and tumor growth in the breast cancer cell line MCF7. Stable overexpression of AGTR1 was associated with accelerated cell proliferation, concomitant with increased expression of survival factors including poly(ADP-ribose) polymerase (PARP) and X-linked inhibitor of apoptosis (XIAP), as well as extracellular signal-regulated kinase (ERK) activation. AGTR1-overexpressing MCF7 cells were more aggressive than their parent line, with significantly increased activity in migration and invasion assays. These observations were associated with changes in EMT markers, including reduced E-cadherin expression and increased p-Smad3, Smad4 and Snail levels. Treatment with the AGTR1 antagonist losartan attenuated these effects. AGTR1 overexpression also accelerated tumor growth and increased Ki-67 expression in a xenograft model. This was associated with increased tumor angiogenesis, as evidenced by a significant increase in microvessels in the intratumoral and peritumoral areas, and enhanced tumor invasion, with the latter response associated with increased EMT marker expression and matrix metallopeptidase 9 (MMP-9) upregulation. In vivo administration of losartan significantly reduced both tumor growth and angiogenesis. Our findings suggest that AGTR1 plays a significant role in tumor aggressiveness, and its inhibition may have therapeutic implications. (C) 2016 Elsevier B.V. All rights reserved.111212Ysciescopu

    Effects of a Tailored Follow-Up Intervention on Health Behaviors, Beliefs, and Attitudes

    Get PDF
    Background: The high rates of relapse that tend to occur after short-term behavioral interventions indicate the need for maintenance programs that promote long-term adherence to new behavior patterns. Computer-tailored health messages that are mailed to participants or given in brief telephone calls offer an innovative and time-efficient alternative to ongoing face-to-face contact with healthcare providers. Methods: Following a 1-year behavior change program, 22 North Carolina health departments were randomly assigned to a follow-up intervention or control condition. Data were collected from 1999 to 2001 by telephone-administered surveys at preintervention and postintervention for 511 low-income, midlife adult women enrolled in the Well-Integrated Screening and Evaluation for Women Across the Nation (WISEWOMAN) program at local North Carolina health departments. During the year after the behavior change program, intervention participants were mailed six sets of computer-tailored health messages and received two computer-tailored telephone counseling sessions. Main outcomes of dietary and physical activity behaviors, beliefs, and attitudes were measured. Results: Intervention participants were more likely to move forward into more advanced stages of physical activity change (p = 0.02); control participants were more likely to increase their level of dietary social support at follow-up (p = 0.05). Both groups maintained low levels of reported saturated fat and cholesterol intake at follow-up. No changes were seen in physical activity in either group. Conclusions: Mailed computer-tailored health messages and telephone counseling calls favorably modified forward physical activity stage movement but did not appreciably affect any other psychosocial or behavioral outcomes
    corecore